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Preface

The act of troubleshooting is both an art and a science. The constant effort of our technical
support teams has been to demystify the art and expose the science behind problem
identification and resolution. The value of this demystification is apparent to all the people
involved.

[ For customers using a service or a platform, it means quick and more effective
solutions, and in many cases greater independence in solving problems -
euphemistically termed as Self Serve.

[ For Product Development and Support teams, it means a scalable and more
efficient model of assisting customers and partnering in their success.

The Apigee Support team at Google constantly strives for this win-win situation through
collaborative partnership with our customers. We offer this guide as the first step in
demystifying the troubleshooting process for the Apigee Edge platform.

Specifically, this document aids in troubleshooting problems that might occur with API
requests flowing through Apigee Edge for Private Cloud Release 4.17.01 or higher. The
document provides a description of tools, commands, and APlIs that can help in analyzing
a problem. It also provides information about properties that can be configured to get
desired behaviour or optimum performance.

Apigee Edge

Apigee Edge is a platform for developing and managing API proxies. Think of a proxy as
an abstraction layer that "fronts" your backend service APIs and provides value-added
features like security, rate limiting, quotas, analytics, and more.

Why Did We Write This Guide

For many years, we have had the privilege of supporting hundreds of our customers who
have used the Apigee Edge platform as a part of their Digital Transformation journey.
During this time, we have gained knowledge and key perspectives on common issues that
customers face when using the Apigee Edge Private Cloud and the diagnostics that are
most useful to troubleshoot these issues.
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We have captured these insights in this guide and hope they will help you troubleshoot
and resolve issues without having to contact Apigee customer support.

While our customer support teams remain available to assist you, this guide will help you
to:
- Determine the source of issues
- Solve issues independently wherever feasible
- Perform the relevant diagnostics so that support teams can help resolve issues
quicker

If you are able to troubleshoot and resolve a majority of issues that you encounter on
Apigee Edge using this guide, we would consider our mission accomplished.

Who Should Use This Guide

The target audience for this document comprises developers who are working with Apigee
Edge for Private Cloud Release 4.17.01 or higher, as well as support or administration
personnel who maintain infrastructure and datastores that are associated with Apigee
Edge.

This document is intended for readers with a high-level understanding of Apigee Edge and
its architecture, as well as some understanding of basic Edge concepts such as policies,
analytics, monetization, and datastores such as Cassandra and Postgres. In addition, it is
assumed that the reader is reasonably proficient with the operating system where Apigee
Edge is installed.

How This Guide Is Organized

This Troubleshooting Guide has been categorized into four parts:

PART 1 - Troubleshooting

[ This part introduces general debugging techniques such as using trace and debug
sessions in Apigee Edge.

[ It also contains procedures to try when you encounter a problem with your APIs at
runtime or during deployment, or any problem with analytics, developer portal,
monetization, OpenLDAP, or ZooKeeper.
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PART 2 - Commands Quick Reference

[ This part provides information about some of the commonly used commands to
start and stop Edge components, SQL queries in Postgres, and Cassandra
datastores, or get information from ZooKeeper.

PART 3 - APIs Quick Reference

[ This part provides information about some of the commonly used management
APIs to get information about Edge entities, servers, or analytics.

PART 4 - Properties

[ This part provides information about some of the important properties that can be
configured on Edge components to get desired behaviour or optimum
performance.
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PART 1 - Troubleshooting

General Edge Troubleshooting

This section does not describe how to solve a specific problem, but describes three
general-purpose tools that can help you with many different problems:

e Ul Trace
e Debug Sessions
e Component Logs

Ul Trace

Ul Trace is a tool for troubleshooting and monitoring API proxies running on Apigee Edge.
Trace lets you probe the details of each step through an API proxy flow.

With Trace, you can record and inspect each step in the API proxy transaction. For
example, you can view flow variables before and after a policy executes, inspect the
request and response payloads, view headers and query parameters, and more.

The Trace tool has two modes:

e Online mode where you make a request to an API proxy and then inspect the
results right away. You can make several calls to the proxy before examining the
trace.

One Trace session can support 10 request/response transactions per Message
Processor. With two Messages Processors handling traffic, 20 request/response
transactions are supported. A trace session automatically stops after 10 minutes if
you don't manually stop it.

e The Offline Trace tool lets you view and analyze trace sessions that were
previously saved. A saved trace session is essentially a "recording” of a trace
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session, and can be useful for cases where troubleshooting and further analysis
is required. The Ul for the Offline Trace tool is similar to the "live" Trace tool.

The trace tool has two main parts:

The transaction map uses icons to mark each notable step that occurs during an
API proxy transaction, including policy execution, conditional steps, and transitions.
Hover over any icon to see summary information. The request flow steps appear
along the top of the transaction map and response flow steps along the bottom.

Here's a sample transaction map with the main proxy processing segments
labeled:

Request flow

Y

Begin Proxy Begin Target
Reguest Flow Request Flow

\ 4
8-0 B S
BB=R00 5
! // /T Next
|

4 v |

Begin Proxy Begin Proxy Begin Target
Post Client Flow Response Flow Response Flow

Response flow

For a complete description of all symbols shown in the trace window above, see
Transaction map icons.

The phase details section of the tool lists information about the proxy's internal
processing, including variables that were set or read, request and response
headers, and much more. Click any icon to see the phase details for that step.
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Here's a sample of the phase details:

Phase Details
Request Received from Client Response Sent to Client
GET /v1/helloworld 200 OK
Request Headers Response Headers
Accept Accept text/html, applicatic

Accept-Encoding gzip,deflate

Accept-Encoding g
Accept-Language an-US.emg=0.8

Accept-Language
Cache-Control max-age=0 Cache-Control max-age=0
Cookie _ga=0GA1.2.178B017158.1501684656 Content-Type texi/plain
Host apig! t Cookie _ga=0GA1.2.1788(
Upgrade-Insecure-Requests - Host apiges
User-Agent Mezillas/s O (Macint 12_6) AppleWebKit'537.36 (KHTML like Upgrade-Insecure-Requests

Gecko) Chrome/BO0 User-Agent Mozila/s.0 (Macin
X-Forwarded-For 76.119.101.48 ne/t
X-Forwarded-Port 80 X-Forwarded-For
X-Forwarded-Proto nitp X-Forwarded-Port 50

X-Forwarded-Proto nttp

Request Content Response Content

For a complete description of all information shown in the phase details above, see
Understanding the phase details.

References

Watch a video for an introduction to the Trace tool
Using the Trace tool
Using the Offline Trace tool

Debug Sessions

A debug session records detailed information for each step in the API proxy transaction,
such as flow variables before and after a policy executes, request and response payloads,
headers and query parameters, and more.

The data generated by a debug session is the same data that is used to generate the Ul
Trace display in the Edge Ul. See Ul Trace for more. The difference is that debug data is
returned to you as an XML or JSON object that contains all the debug data for one call to
an API proxy.

By default, a debug session captures a maximum of 10 messages per Message Processor
for a 10 minute interval, whichever comes first. For example, if you have two Message
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Processors, the the message maximum is 20 for a 10 minute interval. However, you can
optionally extend the duration of the debug session.

The following procedure describes how to create a debug session:
1. Use the Create a debug session AP| to create a debug session, specifying the API

proxy and environment that you want to debug. Once created, all calls to the API
proxy generate debug data.

Alternatively, you can create a debug session that captures only API calls with
specific query parameters and/or HTTP headers. Filtering is particularly useful for
troubleshooting. For more information, see Create a debug session with a filter.

2. Make a request to a deployed API proxy. Each call to the API proxy creates a
debug object with a unique ID.

3. Use the Get debug session transaction IDs API to get a list of all debug IDs for the
debug session.

4. Use the Get debug session transaction data API to retrieve the debug data
associated with a specific debug ID.

5. Call the Delete debug session API to explicitly close the debug session. Closing
the debug session discards all the associated data.

Alternatively, all data is discarded when the debug session expires.

Component Logs

Apigee Edge is comprised of multiple processes, each of which emits messages into a
system log. You can examine the logs to obtain information about the operation of the
specific process, for example the management server, the Ul server, or the message
processor itself.

The log files for each component are contained in the Zopt/apigee/var/log directory
on the node hosting the component. Each component has its own subdirectory. For

example, the logs for the Management Server are in the directory:

/opt/apigee/var/log/edge-management-server
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By default, Edge components use a logging level of INFO. However, you can set the
logging level for each Edge component. The available log levels are: ALL, DEBUG,
ERROR, FATAL, INFO, OFF, TRACE, WARN.

To set the log level for the component, you have to edit the component's properties file to
set a token, then restart the components. For example, you might want to set it to DEBUG

for the Message Processor and to ERROR for the Management Server.

For information on setting log levels, see Setting the log level for an Edge component.

The following table lists the location of the log files on a node for each component installed
on the node:

Components Location
Management Server /opt/apigee/var/log/edge-management-server
Router /opt/apigee/var/log/edge-router

The Edge Router is implemented by using Nginx. The Nginx
logs are available in:

/opt/apigee/var/log/edge-router/nginx

/opt/nginx/logs
Message Processor /opt/apigee/var/log/edge-message-processor
Apigee Qpid Server /opt/apigee/var/log/edge-qgpid-server
Apigee Postgres Server /opt/apigee/var/log/edge-postgres-server
Edge Ul /opt/apigee/var/log/edge-ui
ZooKeeper /opt/apigee/var/log/apigee-zookeeper
OpenLDAP /opt/apigee/var/log/apigee-openldap
Cassandra /opt/apigee/var/log/apigee-cassandra
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Qpidd /opt/apigee/var/log/apigee-qpidd
PostgreSQL database /opt/apigee/var/log/apigee-postgresql
References
Log files

Setting the log level for an Edge component
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Troubleshooting Runtime Problems

This section provides information and guidance on troubleshooting some commonly
observed runtime problems such as 5XX Errors and SSL handshake failures in Apigee
Edge.

500 Internal Server Error

Description

The client application gets an HTTP status code of 500 with the message “Internal
Server Error” as a response for API calls. The 500 Internal Server error could be caused
by an error during the execution of any policy within Edge or by an error on the
target/backend server.

Error Messages

You may get the following error message:

HTTP/1.1 500 Internal Server Errar

In some cases, you may observe another error message which has more details. Here is a
sample error message:

{

"fault™:
{ "detail™:
{ "errorcode\":\"steps.servicecallout.ExecutionFailedy"} ,\ "faultstring\":\"Execution of ServiceCallout
callWCSAuthServiceCallout failed. Reason: ResponseCode 400 is treated as error
iy
}
¥
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Overview of 500 Internal Server Error

The HTTP status code 500 is a generic error response. It means that the server
encountered an unexpected condition that prevented it from fulfilling the request. This
error is usually returned by the server when no other error code is suitable.

Causes
The 500 Internal Server Error could be thrown due to a number of different causes. In

Edge, the causes can be classified into two main categories based on where the error
occurred:

Location of Error Details

Execution Error in an Edge Policy | A Policy within the API proxy may fail for some reason.

Error in the Backend Server The backend server may fail for some reason.

Let’'s now look at how to diagnose the situation further to determine the cause of the issue.
Determine whether the error occurred in a policy or in the backend server

As a first step, use one of the following procedures to determine if the 500 Internal Server
Error was thrown during the execution of a policy within the API proxy or by the backend
server.

Procedure 1: Using Trace in Ul

1. If the issue is still active, enable the trace in Ul for the affected API.

2. Once you have captured the trace, select the API request that shows the response
code as 500.

3. Navigate through all the phases of the failing API request and check which phase
returns the 500 Internal Server Error:
a. If the error is thrown during the execution of a policy, then proceed to
Execution Error in an Edge Policy.

Hd*3128BgjhffBpsg/BmBjhiutB ftfswfe 18
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b. If the backend server has responded back with 500 Internal Server, then
proceed to Error in the Backend Server.

Procedure 2: Using Nginx Access Logs

You can also refer to Nginx Access logs to determine whether the 500 status code was
thrown during the execution of a policy within the API proxy or by the backend server.
This is particularly useful if the issue has occurred in the past or if the issue is intermittent
and you are unable to capture the trace in Ul. Use the following steps to determine this
information from Nginx access logs:

1. Check the Nginx access logs
(/opt/apigee/var/log/edge-router/nginx/<org>~<env>.<port#>_a

ccess_log).

2. Search if there are any 500 Errors for the specific API proxy at the specific
duration.

3. If there are any 500 Errors, then check if the error is a policy or a target server
error, as shown below:

Sample Entry showing a Policy Error

Unigue
request
message id

2017-08-13

500 Error

131 1927168.69.24:13765  192.168.84.190:8998

20.152 - _-:;_'_'_Q_D_Q EQI_J;;;;_M 246 POST /v2/carmodels/inventory/usedcars
HTTP/1.1 <frt-1-25958-39276085-2 Mozilla/5.0 (Windows NT 6.1; WOW64; rv:54.0)
Gecko/20100101 Firefox]54-40 myorg.domain.com __ rrt-1-25958-39276085-7
109.31.198.248 false (policysteps.javascript.ScriptExecutionFailed —

javascript/GetlnventoryElasticsearth  InventoryUkedCars

fnrga_nim_tmnﬁ?m?org?enmn_mentﬁfteslﬁﬂpiprnxie&.-’Carr-'mdela blue -1

[ JavaScript Name is ] [ JavaScript Policy ]
GetInventoryElasticSearch has failed
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Google Cloud apigee

Sample Entry showing a Target Server Error

Target Server Error ]

(00 rrt-2-eu 192.168.70.129:29923 192.168.84.172:8998
5 500 > 628 119 GET /v2/lisersforders/vehicles HTTP/1.1
fft-2-25958-39276021-L  Jakarta Commons-HttpClient43.1 myorg.domain.com
rrt-2-el-Z5958-39276021-1 54.77.171.95 false -'::'c_arge?g)

<réssaging.adaptors. http.flow.ErrorResponseCotte: null/null -
furganizatinnﬁfulgltaﬁlnTnvlrunmentsfrcnault.fapiprnxicﬁ.wl-Llﬁcrs blue 553

Error Response from
Target Server

4. Once you've identified whether it is a policy or target server error:
a. Proceed to Execution Error in an Edge Policy if it is a policy error.
b. Proceed to Error in Backend Server if it is a target server error.

Execution Error in an Edge Policy

Steps to Diagnose

If you have confirmed that one of the policies within the API proxy has failed, then perform
the following steps:

1. If you have the trace Ul session for the error, then:

a. Select the API request that is failing with 500 Internal Server Error in the
trace.

b. Examine the request and select the specific policy that has failed or the flow
named "Error" that is immediately following the failed policy in the trace.

c. Get more details about the error either by checking the “error” field under
the Properties section or the Error content.

d. Using the details you’ve collected about the error, try to determine its
cause.

e. Fix the issue with the policy, if possible.

2. If you don’t have the trace Ul session, then:
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a. Use the Nginx access logs as explained in the previous section to
determine the failing policy in the API proxy and also the unique request
message id

b. Check the Message Processor logs
(/opt/apigee/var/log/edge-message-processor/logs/system
- 1og) and search for the unique request message id in it.

c. If you do find the unique request message ID, see if you can get more
information about the cause for the failure.

d. Fix the issue with the policy, if possible.

Since 500 Internal Server Error can be caused for different reasons, the following
examples illustrate how to determine the cause and resolution for different types of issues.

Example 1: Failure in Service Callout policy due to an error in the backend server

If the call to the backend server fails within the Service Callout policy with any error such
as 4XX or 5XX, then it will be treated as 500 Internal Server Error.

1. Here’s an example where the backend service fails with a 404 error within the
Service Callout policy. The following error message is sent to the end user:

{

“fault":
{ "detail":
{ "errorcode":"steps.servicecallout. ExecutionFailed"
¥, “faultstring:"Execution of ServiceCallout service_callout_v3_store_by_lat_lon
failed. Reason: ResponseCode 404 is treated as error”
¥
+
}

2. The following trace Ul session shows 500 status code caused due to an error in
Service Callout policy:
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Fel 25, ZUTY7

Environment prod Revisi¢ Error £:90:39 AM
Transaction Map Elapsed < Tms
v
8 oo B B0 B 8800 BB B o] B OB oo
1ms= re

( Back | | Next)

Phase Details
Flowinfo Eror

Properties
current.flow.name PreFlow
error Execution of SenviceCallout senvice_callout_v3_store_by_lat_lon failed. Reason: ResponseCode 404 is treated as emor
error.cause ResponseCode 404 is treated as emor
error.class com.apigee.kemel.exceptions.spi.UncheckedException

3. In this example, the “error” property lists the reason for the Service Callout policy
failure as “ResponseCode 404 is treated as error”. This error might occur if the
resource being accessed via the backend server URL in the Service Callout policy
is not available.

4. Check the availability of the resource on the backend server. It might not be
available temporarily/permanently or it might have been moved to a different
location.

Resolution

1. Check the availability of the resource on the backend server. It might not be

available temporarily/permanently or it might have been moved to a different

location.

2. Fix the backend server URL in the Service Callout policy.

Example 2: Failure in Extract Variables Policy

Let’'s now look at an example, where 500 Internal Server Error is caused due to an error in
Extract Variables and see how to troubleshoot and resolve the issue.
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1. The following trace in Ul session shows 500 status code due to an error in Extract
Variables policy:

Dashboard / API Proxies / Offline Trace

Extract.repldFromCookie
Ofﬂlne Trace visuaize previously saved trace sessions. Status Execution Eror
Name Extract repldFromCookie
Trace File trace-1493971794962.xml | Ghoose File Policy Type Extract Varlables
- Flow Proxy Request
Transactions « in Details

i Elapsed < 1ms
Staws  Method UR Eapsed  ransaction Map p:

[assisted- =
4 200 authivi/permissio... 2415 ms Js B X\

profile-permission

Jo O] o B

/assisted-
3 200 auth/vi/permissio... 6ms
profile-permission

[assisted- I

2 500 auth/vi/permissio... 6214 ms

profile-permission Phase Details

st %Extract.rep\dFromCooKie
1 200 auth/vi/permissio... 58 ms

profile-permission 500 Internal Server Error

Variables Read and Assigned
serviceCallout.oamCookieValidationResponse
extractvariables.failed =true

2. Select the failing Extract Variables policy, scroll down and look at the “Error
Content” section for more details:

Error Content

{"fautt":{"faultstring":"serviceCallout, oanCookieValidat ionResponse nessage is not available for Extr
Bogy actlariable: Extract, repIdFronCookie","detail"{"errorcode"s"steps. extractvariables. SourceMessageNoth
vailable'}}

3. The Error Content indicates that
the“serviceCallout.oamCookieValidationResponse” variable is not available in
the Extract Variables policy.
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As the name of the variable indicates, it is possible that the variable should have
been set by the preceding Service Callout policy.

4. If you check the Service Callout policy, you might find that the
“serviceCallout.oamCookieValidationResponse” variable was not set.

This indicates that the call to the backend service failed, resulting in an empty
response variable.

5. Though the Service Callout policy has failed, the execution of the policies after
Service Callout policy continue because the “continueOnError” flag in the Service
Callout policy is set to true.

6. Note down the unique message id “X-Apigee.Message-ID” for this specific API
request from the trace, as follows:
a. Select the “Analytics Data Recorded” phase from the request.
b. Scroll down and note the value of X-Apigee.Message-ID.

Trace File trace-1493971794962.xml Choose File ]
Analytics Data Recor

Trace Session Details
Transaction Map Elapsed 1ms

ions.

S v
2 ; =2 ‘
HEAR B oD 080000RE - BRBEE:
'E Sl
0w
$
[
g
£qrims
Back | | Next)

Phase Details

A-ApIgee.TauIl-coue SIEPS.EXTECIVA DS, SOUCBIVIES SEYBINOLAVAIDE

X-Apigee.fault-flag false

X-Apigee.fault-flow postRepProfle

X-Apigee.fault-policy exiractvariables/Exiract repldFromCookie

X-Apigee.fault-revision forganizations/tmobilegat/enviranments/lab06-facade/apiproxies/assisted-auth

X-Apigee.fault-source policy

X-Apigee.Message-ID m-04984fed9ebad3551-c-wo-32168-775637-2

7. View the Message Processor log
(/opt/apigee/var/log/edge-message-processor/system. log) and
search for the unique message id noted down in step #6. The following error
message was observed for the specific API request:
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2017-05-05 07:48:18,653 org:myorg env: prod api:myapi rev:834

messageid: rrt-04984fedSe5ad3551-c-wo-32168-77563 NIOThread@5 ERROR HTTP.CLIENT -
HTTPClientsContext.onTimeout() : ClientChannel[C:]@149081 useCount=1 bytesRead=0
bytesWritten=0 age=3002ms lastIO=3002ms .onConnectTimeout
connectidddress=mybackend.domain. com/ 33 KK KK X443
resolvediddress=mybackend.domain. comy 3, s 00 KK

The above error indicates that the Service Callout policy failed due to a connection
timeout error while connecting to the backend server.

8. To determine the cause for the connection timeout error, executed the telnet
command to the backend server from the Message Processor(s). The telnet
command gave “Connection timed out” error as shown below:

telnet mybackend.domain.com 443
Trying XXX, ..
telnet: connect to address XK. XX Connection timed out

Typically, this error is observed under the following circumstances:
[ When the backend server is not configured to allow traffic from the Edge
Message Processors.
[ If the backend server is not listening on the specific port.

In the above illustrated example, though the Extract Variables policy failed, the
actual cause was that Edge was unable to connect to the backend server in the
Service Callout policy. And the cause for this failure was that the backend end
server was not configured to allow traffic from the Edge Message Processors.

Your own Extract Variables policy will behave differently and may fail for a different
reason. You can troubleshoot the issue appropriately depending on the cause for
failure of your Extract Variables policy by checking the message in the error
property.

Resolution

1. Fix the cause for error or failure in Extract Variables policy appropriately.
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2. Inthe illustrated example above, the solution was to rectify the network
configuration to allow the traffic from Edge Message Processors to your backend
server. This was done by while listing the Message Processors’ IP addresses on
the specific backend server. For example, On Linux, you could use iptables to
white list or allow the traffic from Message Processor’s IP addresses on the
backend server.

Example 3: Failure in JavaCallout policy

Let's now look at an example, where 500 Internal Server Error is caused due to an error in
Java Callout policy and see how to troubleshoot and resolve the issue.

1. The following Ul trace shows 500 status code due to an error in Java Callout

Policy:
Dashboard / API Proxies / Offline Trace OracleCallout
Offline Trace visuaize previously saved trace sessions. Status Execution Eror
Name OracleCallout
Trace File trace-1489896294343.xml | GChoose File Policy Type Java Callout
- Flow Proxy Reguest
Transactions « B d 03
i apse ms
Status  Method URI Eapsed  Iransaction Map B
v
5 500 /data 34 ms
D Js T T F AX
4 500 /data 30ms
3 500 /data 27 ms
2 500 /data 32ms
1ms23ms
1 500 /data 35ms

2. Select the Flow named “Error” followed by the failed Java Callout Policy to get the
error details as shown in the figure below:
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Transaction Map Elapsed < 1ms

& Jsngwr

re

Phase Details

Flowinfo

Properties

error

error.class

Identifier

javacallout.OracleCallout.failed true

Google Cloud apigee

Trace Session Details

Back

Error

Failed to execute JavaCallout. java.sal. SQLException: ORA-28001: the password has expired
com.apigee.kermel.exceptions.spi.UncheckedBxception
fault

3. In this example, the “error” property under the Properties section reveals that the
failure is due to expired password being used while connecting to the Oracle
Database from within the JavaCallout policy. Your own Java callout will behave
differently and will populate a different message in the error property.

4. Check the JavaCallout policy code and confirm the correct configuration that needs

to be used.

Resolution

Fix the Java callout code or configuration appropriately to avoid the runtime exception. In
the illustrated Java callout failure example above, one would need to use the correct
password for connecting to the Oracle database to resolve the issue.
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