

Apigee Edge Troubleshooting Guide

Self diagnose problems on Edge Private Cloud

Contents

Preface 7
Apigee Edge 7
Why Did We Write This Guide 7
Who Should Use This Guide 8
How This Guide Is Organized 8
Authors 9
Acknowledgements 9

PART 1 - Troubleshooting 11

General Edge Troubleshooting 11
UI Trace 11

References 13
Debug Sessions 13
Component Logs 14

References 16

Troubleshooting Runtime Problems 17
500 Internal Server Error 17

Overview of 500 Internal Server Error 18
Execution Error in an Edge Policy 20
Error in the Backend Server 28

502 Bad Gateway 31
Overview of 502 Bad Gateway 31
Incorrectly configured Target Server 32
EOFException from the Backend Server 35

503 Service Unavailable 39
Overview of 503 Service Unavailable 39
Northbound and Southbound Connection 40

Determine whether the 503 Service Unavailable error occurred at northbound
or southbound connection 40

Overloaded Server 42
Connection Errors 43

SSL Handshake Failures 45
Overview of SSL Handshake 45

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 1

Protocol Mismatch 46
Cipher Mismatch 49
Incorrect Certificate 53

Hostname Mismatch 54
Incomplete or Incorrect certificate chain 56
Expired/Unknown Certificate sent by the Server/Client 58

SNI Enabled Server 63
504 Gateway Timeout 68

Overview of 504 Gateway Timeout 68
Slow Backend Server 70

Increase the timeout value on Router and Message Processor 81
Slow API Request Processing by Edge 83

Troubleshooting Analytics Problems 86
Data not showing up on analytics dashboards in Edge 86

No API Traffic for Organization-Environment 87
Data available in Postgres database, but not displaying in the Edge UI 88

Determine the availability of latest Analytics data in Postgres database 88
Analytics Data not being pushed to Postgres Database 91
Incorrect Analytics Deployment 93
Stale Analytics Server UUIDs 95

Custom variable not visible in analytics custom reports 97
Custom Variable not adhering to the standard guidelines 97
No traffic on API proxy implementing the Statistics Collector policy 98
Custom Variable not pushed to Postgres Server 99

Postgres Server running out of disk space 101
Inadequate disk space 101
Lack of Analytics Data Pruning 103

Analytics Reports timing out 105
Inadequate Hardware Configuration 106
Large amount of Analytics data in Postgres Database 106
Insufficient time to fetch Analytics data 107

Troubleshooting Deployment Errors 109
Deployment Error: "Call timed out; either server is down or server is not reachable" 109

Network Connectivity Issue 110
Large API Proxy Bundle 116

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 2

Deployment Error: “Error while fetching children for path” 118
Deployment Error: "Error while accessing datastore" 122

Network Connectivity Issue between Message Processor and Cassandra 123
Deployment errors due to Cassandra restarts 125
Spike in read request latency on Cassandra 125
API Proxy Bundle larger than 15MB 127

Deployment Error: "Unexpected error occurred while processing the updates" 130
Out Of Memory 131
Error in API proxy bundle 133

Troubleshooting Developer Portal Problems 135
Overview of Apigee Developer Portal (Drupal) 135

How SmartDocs works 135
How the Developer Portal Communicates with Edge 136

API calls via Developer Portal fail with Internal Error 137
SmartDocs proxy misconfigured or network firewall restrictions 138
Portal configured over HTTPS, SmartDocs request over HTTP 139
SmartDocs proxy returning an exception 139
Edge Message Processors unable to call published API endpoint 140

Communication Issues between Developer Portal and Edge 143

Troubleshooting Edge Router Problems 147
Bad Config Files 147

Troubleshooting Monetization Problems 151
Developer suspended 151
Monetization setup issues 155

Monetization Limits Check Policy not used in API Proxy 156
API Product is not monetized 157
Transaction recording policy incorrectly defined 157
Developer has not purchased rate plan 159

Troubleshooting OpenLDAP Problems 160
SMTP is disabled and users need to reset password 160
LDAP is not Replicating 163
Unable to start OpenLDAP 165
OpenLDAP Data Corruption 167

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 3

Troubleshooting ZooKeeper Problems 171
ZooKeeper Connection Loss Errors 171

Network connectivity issue across different data centers 174
ZooKeeper node not serving requests 177

Unable to start ZooKeeper 183
Misconfigured ZooKeeper MyId 184
ZooKeeper port in use 185
Incorrect process id in apigee-zookeeper.pid file 187
ZooKeeper Leader Election Failure 188

ZooKeeper Data Issues 189

PART 2 - Commands Quick Reference 192

Components Command Reference 192
apigee-all 192

apigee-all command reference table 192
References 192

apigee-service 193
component names reference table 193
apigee-service command reference table 194

References 195

Postgres Commands Reference 196
PostgreSQL (psql) utility 196

Verify existence of your org-env tables 196
List the columns in fact table 197
Get the Database Table Size 201
Get Latest Timestamp In Fact Table 202
Get the Oldest and Latest Timestamp in Fact Table 202
Get details about SQL queries running in Postgres Database 203
Get Replication Time Lag on Postgres Standby 205

Cassandra Commands Reference 207
Cassandra Query Language command-line (cqlsh) utility 207

Get information about all keyspaces in Cassandra datastore 207
Get Information about OAuth tokens 208
Get Information about Developer Apps 209

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 4

Get Information about Apigee Cache 209
Cassandra nodetool Utility 210

Check Ring Status 210
Check compaction status 210
Check Gossip info 211
Check reads/writes/drops 212
Display statistics for every keyspace and column family 213
Status of the thrift server 214
Show Network Statistics 214
Repair tables 215

ZooKeeper Utilities 216
ZooKeeper Command Line Interface (zkCli) utility 216

List Data in a ZooKeeper Node 216
Get Data from a ZooKeeper Node 217

ZooKeeper Tree (zkTree) Utility 218
How to check if a ZooKeeper Node is leader? 219

Diagnostic Tools and Logs 221
TCP/IP packet sniffer (tcpdump) utility 221
Heap dumps 223
Thread dumps 225

PART 3 - APIs Quick Reference 227
Organization APIs 227
Environment APIs 228
API Proxy APIs 229
Deployment APIs 231
Virtual Host APIs 232
Keystore APIs 234
API Product/App/Developer APIs 236
Analytics APIs 238
Server in Pods/Region APIs 239
Server Info APIs 241
Debug APIs 243

PART 4 - Properties 244

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 5

Message Processor Properties 244
http.properties 245
message-logging.properties 252
security-policy.properties 253
system.properties 254

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 6

Preface
The act of troubleshooting is both an art and a science. The constant effort of our technical
support teams has been to demystify the art and expose the science behind problem
identification and resolution. The value of this demystification is apparent to all the people
involved.
 For customers using a service or a platform, it means quick and more effective

solutions, and in many cases greater independence in solving problems -
euphemistically termed as Self Serve.

 For Product Development and Support teams, it means a scalable and more
efficient model of assisting customers and partnering in their success.

The Apigee Support team at Google constantly strives for this win-win situation through
collaborative partnership with our customers. We offer this guide as the first step in
demystifying the troubleshooting process for the Apigee Edge platform.

Specifically, this document aids in troubleshooting problems that might occur with API
requests flowing through Apigee Edge for Private Cloud Release 4.17.01 or higher. The
document provides a description of tools, commands, and APIs that can help in analyzing
a problem. It also provides information about properties that can be configured to get
desired behaviour or optimum performance.

Apigee Edge
Apigee Edge is a platform for developing and managing API proxies. Think of a proxy as
an abstraction layer that "fronts" your backend service APIs and provides value-added
features like security, rate limiting, quotas, analytics, and more.

Why Did We Write This Guide
For many years, we have had the privilege of supporting hundreds of our customers who
have used the Apigee Edge platform as a part of their Digital Transformation journey.
During this time, we have gained knowledge and key perspectives on common issues that
customers face when using the Apigee Edge Private Cloud and the diagnostics that are
most useful to troubleshoot these issues.

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 7

We have captured these insights in this guide and hope they will help you troubleshoot
and resolve issues without having to contact Apigee customer support.

While our customer support teams remain available to assist you, this guide will help you
to:

- Determine the source of issues
- Solve issues independently wherever feasible
- Perform the relevant diagnostics so that support teams can help resolve issues

quicker

If you are able to troubleshoot and resolve a majority of issues that you encounter on
Apigee Edge using this guide, we would consider our mission accomplished.

Who Should Use This Guide
The target audience for this document comprises developers who are working with Apigee
Edge for Private Cloud Release 4.17.01 or higher, as well as support or administration
personnel who maintain infrastructure and datastores that are associated with Apigee
Edge.

This document is intended for readers with a high-level understanding of Apigee Edge and
its architecture, as well as some understanding of basic Edge concepts such as policies,
analytics, monetization, and datastores such as Cassandra and Postgres. In addition, it is
assumed that the reader is reasonably proficient with the operating system where Apigee
Edge is installed.

How This Guide Is Organized
This Troubleshooting Guide has been categorized into four parts:

PART 1 - Troubleshooting

 This part introduces general debugging techniques such as using trace and debug

sessions in Apigee Edge.
 It also contains procedures to try when you encounter a problem with your APIs at

runtime or during deployment, or any problem with analytics, developer portal,
monetization, OpenLDAP, or ZooKeeper.

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 8

PART 2 - Commands Quick Reference

 This part provides information about some of the commonly used commands to

start and stop Edge components, SQL queries in Postgres, and Cassandra
datastores, or get information from ZooKeeper.

PART 3 - APIs Quick Reference

 This part provides information about some of the commonly used management

APIs to get information about Edge entities, servers, or analytics.

PART 4 - Properties

 This part provides information about some of the important properties that can be

configured on Edge components to get desired behaviour or optimum
performance.

Authors
The key contributors are:

Amar Devegowda
Janice Hunt
Divya Achan
Arun Kumar Gopalakrishnappa
Alexander Toombs
Phani Madgula
Stephen Gilson

Acknowledgements
We would like to acknowledge many people who have contributed their technical inputs to
this guide - Rajesh Jadhav, Gregory Brail, Sriram Padmanabhan, Peter Johnson, Senthil
Kumar Karuppiah, Senthil Kumar Tamizhselvan, Sribalaji Alagarasu, Chris Novak, Ken
Chan, Rajanish GJ, Baba Krishnankutty, Rammohan Ganapavarapu, Dino Chiesa, Marsh

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 9

Gardiner, Corinna Fu, Dave Newman, Jagjyot Hans, Karl Kalckstein, Russell Blewitt,
Venkataraghavan Lakshminarayanachar.

Special thanks to Stephen Gilson and Liz Lynch for their help in reviewing, proofreading,
and shaping this guide.

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 10

PART 1 - Troubleshooting

General Edge Troubleshooting
This section does not describe how to solve a specific problem, but describes three
general-purpose tools that can help you with many different problems:

● UI Trace
● Debug Sessions
● Component Logs

UI Trace
UI Trace is a tool for troubleshooting and monitoring API proxies running on Apigee Edge.
Trace lets you probe the details of each step through an API proxy flow.

With Trace, you can record and inspect each step in the API proxy transaction. For
example, you can view flow variables before and after a policy executes, inspect the
request and response payloads, view headers and query parameters, and more.

The Trace tool has two modes:

● Online mode where you make a request to an API proxy and then inspect the
results right away. You can make several calls to the proxy before examining the
trace.

One Trace session can support 10 request/response transactions per Message
Processor. With two Messages Processors handling traffic, 20 request/response
transactions are supported. A trace session automatically stops after 10 minutes if
you don't manually stop it.

● The Offline Trace tool lets you view and analyze trace sessions that were

previously saved. A saved trace session is essentially a "recording" of a trace

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 11

session, and can be useful for cases where troubleshooting and further analysis
is required. The UI for the Offline Trace tool is similar to the "live" Trace tool.

The trace tool has two main parts:

● The transaction map uses icons to mark each notable step that occurs during an
API proxy transaction, including policy execution, conditional steps, and transitions.
Hover over any icon to see summary information. The request flow steps appear
along the top of the transaction map and response flow steps along the bottom.

Here's a sample transaction map with the main proxy processing segments
labeled:

For a complete description of all symbols shown in the trace window above, see
Transaction map icons.

● The phase details section of the tool lists information about the proxy's internal

processing, including variables that were set or read, request and response
headers, and much more. Click any icon to see the phase details for that step.

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 12

http://docs.apigee.com/api-services/content/using-trace-tool-0#transactionmaplegend

Here's a sample of the phase details:

For a complete description of all information shown in the phase details above, see
Understanding the phase details.

References
Watch a video for an introduction to the Trace tool
Using the Trace tool
Using the Offline Trace tool

Debug Sessions
A debug session records detailed information for each step in the API proxy transaction,
such as flow variables before and after a policy executes, request and response payloads,
headers and query parameters, and more.

The data generated by a debug session is the same data that is used to generate the UI
Trace display in the Edge UI. See UI Trace for more. The difference is that debug data is
returned to you as an XML or JSON object that contains all the debug data for one call to
an API proxy.

By default, a debug session captures a maximum of 10 messages per Message Processor
for a 10 minute interval, whichever comes first. For example, if you have two Message

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 13

http://docs.apigee.com/private-cloud/latest/using-apigee-adminapish-utility
http://docs.apigee.com/api-services/content/using-trace-tool-0
http://docs.apigee.com/api-services/content/using-offline-trace-tool
https://youtu.be/X_35aBpJmA8

Processors, the the message maximum is 20 for a 10 minute interval. However, you can
optionally extend the duration of the debug session.

The following procedure describes how to create a debug session:

1. Use the Create a debug session API to create a debug session, specifying the API
proxy and environment that you want to debug. Once created, all calls to the API
proxy generate debug data.

Alternatively, you can create a debug session that captures only API calls with
specific query parameters and/or HTTP headers. Filtering is particularly useful for
troubleshooting. For more information, see Create a debug session with a filter.

2. Make a request to a deployed API proxy. Each call to the API proxy creates a
debug object with a unique ID.

3. Use the Get debug session transaction IDs API to get a list of all debug IDs for the
debug session.

4. Use the Get debug session transaction data API to retrieve the debug data
associated with a specific debug ID.

5. Call the Delete debug session API to explicitly close the debug session. Closing
the debug session discards all the associated data.

Alternatively, all data is discarded when the debug session expires.

Component Logs
Apigee Edge is comprised of multiple processes, each of which emits messages into a
system log. You can examine the logs to obtain information about the operation of the
specific process, for example the management server, the UI server, or the message
processor itself.

The log files for each component are contained in the /opt/apigee/var/log directory
on the node hosting the component. Each component has its own subdirectory. For
example, the logs for the Management Server are in the directory:

/opt/apigee/var/log/edge-management-server

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 14

http://docs.apigee.com/management/apis/get/organizations/%7Borg_name%7D/environments/%7Benv_name%7D/apis/%7Bapi_name%7D/revisions/%7Brevision_number%7D/debugsessions/%7Bsession_name%7D/data
http://docs.apigee.com/management/apis/delete/organizations/%7Borg_name%7D/environments/%7Benv_name%7D/apis/%7Bapi_name%7D/revisions/%7Brevision_number%7D/debugsessions/%7Bsession_name%7D
http://docs.apigee.com/management/apis/post/organizations/%7Borg_name%7D/environments/%7Benv_name%7D/apis/%7Bapi_name%7D/revisions/%7Brevision_number%7D/debugsessions
http://docs.apigee.com/management/apis/get/organizations/%7Borg_name%7D/environments/%7Benv_name%7D/apis/%7Bapi_name%7D/revisions/%7Brevision_number%7D/debugsessions/%7Bsession_name%7D/data/%7Btransaction_id%7D
http://docs.apigee.com/management/apis/post/organizations/%7Borg_name%7D/environments/%7Benv_name%7D/apis/%7Bapi_name%7D/revisions/%7Brevision_number%7D/debugsessions%3F%7Bfilter%7D

By default, Edge components use a logging level of INFO. However, you can set the
logging level for each Edge component. The available log levels are: ALL, DEBUG,
ERROR, FATAL, INFO, OFF, TRACE, WARN.

To set the log level for the component, you have to edit the component's properties file to
set a token, then restart the components. For example, you might want to set it to DEBUG
for the Message Processor and to ERROR for the Management Server.

For information on setting log levels, see Setting the log level for an Edge component.

The following table lists the location of the log files on a node for each component installed
on the node:

Components Location

Management Server /opt/apigee/var/log/edge-management-server

Router /opt/apigee/var/log/edge-router

The Edge Router is implemented by using Nginx. The Nginx
logs are available in:

/opt/apigee/var/log/edge-router/nginx

/opt/nginx/logs

Message Processor /opt/apigee/var/log/edge-message-processor

Apigee Qpid Server /opt/apigee/var/log/edge-qpid-server

Apigee Postgres Server /opt/apigee/var/log/edge-postgres-server

Edge UI /opt/apigee/var/log/edge-ui

ZooKeeper /opt/apigee/var/log/apigee-zookeeper

OpenLDAP /opt/apigee/var/log/apigee-openldap

Cassandra /opt/apigee/var/log/apigee-cassandra

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 15

http://docs.apigee.com/private-cloud/latest/setting-log-level-edge-component

Qpidd /opt/apigee/var/log/apigee-qpidd

PostgreSQL database /opt/apigee/var/log/apigee-postgresql

References
Log files
Setting the log level for an Edge component

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 16

http://docs.apigee.com/private-cloud/latest/installation-overview#filesystemstructure-logfiles
http://docs.apigee.com/private-cloud/latest/setting-log-level-edge-component

Troubleshooting Runtime Problems

This section provides information and guidance on troubleshooting some commonly
observed runtime problems such as 5XX Errors and SSL handshake failures in Apigee
Edge.

500 Internal Server Error

Description

The client application gets an HTTP status code of 500 with the message “Internal
Server Error” as a response for API calls. The 500 Internal Server error could be caused
by an error during the execution of any policy within Edge or by an error on the
target/backend server.

Error Messages

You may get the following error message:

In some cases, you may observe another error message which has more details. Here is a
sample error message:

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 17

Overview of 500 Internal Server Error

The HTTP status code 500 is a generic error response. It means that the server
encountered an unexpected condition that prevented it from fulfilling the request. This
error is usually returned by the server when no other error code is suitable.

Causes

The 500 Internal Server Error could be thrown due to a number of different causes. In
Edge, the causes can be classified into two main categories based on where the error
occurred:

Location of Error Details

Execution Error in an Edge Policy A Policy within the API proxy may fail for some reason.

Error in the Backend Server The backend server may fail for some reason.

Let’s now look at how to diagnose the situation further to determine the cause of the issue.

Determine whether the error occurred in a policy or in the backend server

As a first step, use one of the following procedures to determine if the 500 Internal Server
Error was thrown during the execution of a policy within the API proxy or by the backend
server.

Procedure 1: Using Trace in UI

1. If the issue is still active, enable the trace in UI for the affected API.

2. Once you have captured the trace, select the API request that shows the response
code as 500.

3. Navigate through all the phases of the failing API request and check which phase
returns the 500 Internal Server Error:

a. If the error is thrown during the execution of a policy, then proceed to
Execution Error in an Edge Policy.

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 18

http://docs.apigee.com/api-services/reference/reference-overview-policy

b. If the backend server has responded back with 500 Internal Server, then
proceed to Error in the Backend Server.

Procedure 2: Using Nginx Access Logs

You can also refer to Nginx Access logs to determine whether the 500 status code was
thrown during the execution of a policy within the API proxy or by the backend server.
This is particularly useful if the issue has occurred in the past or if the issue is intermittent
and you are unable to capture the trace in UI. Use the following steps to determine this
information from Nginx access logs:

1. Check the Nginx access logs
(/opt/apigee/var/log/edge-router/nginx/<org>~<env>.<port#>_a
ccess_log).

2. Search if there are any 500 Errors for the specific API proxy at the specific

duration.

3. If there are any 500 Errors, then check if the error is a policy or a target server
error, as shown below:

Sample Entry showing a Policy Error

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 19

Sample Entry showing a Target Server Error

4. Once you’ve identified whether it is a policy or target server error:
a. Proceed to Execution Error in an Edge Policy if it is a policy error.
b. Proceed to Error in Backend Server if it is a target server error.

Execution Error in an Edge Policy

Steps to Diagnose

If you have confirmed that one of the policies within the API proxy has failed, then perform
the following steps:

1. If you have the trace UI session for the error, then:

a. Select the API request that is failing with 500 Internal Server Error in the
trace.

b. Examine the request and select the specific policy that has failed or the flow
named "Error" that is immediately following the failed policy in the trace.

c. Get more details about the error either by checking the “error” field under
the Properties section or the Error content.

d. Using the details you’ve collected about the error, try to determine its
cause.

e. Fix the issue with the policy, if possible.

2. If you don’t have the trace UI session, then:

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 20

a. Use the Nginx access logs as explained in the previous section to
determine the failing policy in the API proxy and also the unique request
message id

b. Check the Message Processor logs
(/opt/apigee/var/log/edge-message-processor/logs/system
.log) and search for the unique request message id in it.

c. If you do find the unique request message ID, see if you can get more
information about the cause for the failure.

d. Fix the issue with the policy, if possible.

Since 500 Internal Server Error can be caused for different reasons, the following
examples illustrate how to determine the cause and resolution for different types of issues.

Example 1: Failure in Service Callout policy due to an error in the backend server

If the call to the backend server fails within the Service Callout policy with any error such
as 4XX or 5XX, then it will be treated as 500 Internal Server Error.

1. Here’s an example where the backend service fails with a 404 error within the

Service Callout policy. The following error message is sent to the end user:

2. The following trace UI session shows 500 status code caused due to an error in
Service Callout policy:

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 21

3. In this example, the “error” property lists the reason for the Service Callout policy
failure as “ResponseCode 404 is treated as error”. This error might occur if the
resource being accessed via the backend server URL in the Service Callout policy
is not available.

4. Check the availability of the resource on the backend server. It might not be
available temporarily/permanently or it might have been moved to a different
location.

Resolution

1. Check the availability of the resource on the backend server. It might not be
available temporarily/permanently or it might have been moved to a different
location.

2. Fix the backend server URL in the Service Callout policy.

Example 2: Failure in Extract Variables Policy

Let’s now look at an example, where 500 Internal Server Error is caused due to an error in
Extract Variables and see how to troubleshoot and resolve the issue.

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 22

1. The following trace in UI session shows 500 status code due to an error in Extract
Variables policy:

2. Select the failing Extract Variables policy, scroll down and look at the “Error
Content” section for more details:

3. The Error Content indicates that
the“serviceCallout.oamCookieValidationResponse” variable is not available in
the Extract Variables policy.

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 23

As the name of the variable indicates, it is possible that the variable should have
been set by the preceding Service Callout policy.

4. If you check the Service Callout policy, you might find that the
“serviceCallout.oamCookieValidationResponse” variable was not set.

This indicates that the call to the backend service failed, resulting in an empty
response variable.

5. Though the Service Callout policy has failed, the execution of the policies after
Service Callout policy continue because the “continueOnError” flag in the Service
Callout policy is set to true.

6. Note down the unique message id “X-Apigee.Message-ID” for this specific API
request from the trace, as follows:

a. Select the “Analytics Data Recorded” phase from the request.
b. Scroll down and note the value of X-Apigee.Message-ID.

7. View the Message Processor log
(/opt/apigee/var/log/edge-message-processor/system.log) and
search for the unique message id noted down in step #6. The following error
message was observed for the specific API request:

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 24

The above error indicates that the Service Callout policy failed due to a connection
timeout error while connecting to the backend server.

8. To determine the cause for the connection timeout error, executed the telnet
command to the backend server from the Message Processor(s). The telnet
command gave “Connection timed out” error as shown below:

Typically, this error is observed under the following circumstances:
 When the backend server is not configured to allow traffic from the Edge

Message Processors.
 If the backend server is not listening on the specific port.

In the above illustrated example, though the Extract Variables policy failed, the
actual cause was that Edge was unable to connect to the backend server in the
Service Callout policy. And the cause for this failure was that the backend end
server was not configured to allow traffic from the Edge Message Processors.

Your own Extract Variables policy will behave differently and may fail for a different
reason. You can troubleshoot the issue appropriately depending on the cause for
failure of your Extract Variables policy by checking the message in the error
property.

Resolution

1. Fix the cause for error or failure in Extract Variables policy appropriately.

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 25

2. In the illustrated example above, the solution was to rectify the network
configuration to allow the traffic from Edge Message Processors to your backend
server. This was done by while listing the Message Processors’ IP addresses on
the specific backend server. For example, On Linux, you could use iptables to
white list or allow the traffic from Message Processor’s IP addresses on the
backend server.

Example 3: Failure in JavaCallout policy

Let’s now look at an example, where 500 Internal Server Error is caused due to an error in
Java Callout policy and see how to troubleshoot and resolve the issue.

1. The following UI trace shows 500 status code due to an error in Java Callout
Policy:

2. Select the Flow named “Error” followed by the failed Java Callout Policy to get the
error details as shown in the figure below:

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 26

3. In this example, the “error” property under the Properties section reveals that the

failure is due to expired password being used while connecting to the Oracle
Database from within the JavaCallout policy. Your own Java callout will behave
differently and will populate a different message in the error property.

4. Check the JavaCallout policy code and confirm the correct configuration that needs
to be used.

Resolution

Fix the Java callout code or configuration appropriately to avoid the runtime exception. In
the illustrated Java callout failure example above, one would need to use the correct
password for connecting to the Oracle database to resolve the issue.

Ƽ!Ƽ)d*3128Ƽ!ƼBqjhffƼ!ƼDpsq/Ƽ!ƼBmmƼ!ƼSjhiutƼ!ƼSftfswfe 27

