You're viewing Apigee Edge documentation.
Go to the
Apigee X documentation. info
Version: 1.2.0
Discover the content and text in images using machine learning models.
This content provides reference for configuring and using this extension. Before using this extension from an API proxy, you must:
Enable the Cloud Vision API for your service account.
If you'll be using Cloud Storage as the source of your images, you'll also need to grant access for this extension to Cloud Storage as described in the Google Cloud Storage Extension reference.
When you have a service account that has permission for Cloud Vision (and Cloud Storage, if you're using it), use the GCP Console to generate a key for the service account.
Use the contents of the resulting key JSON file when adding and configuring the extension using the configuration reference.
About Cloud Vision
The Google Cloud Vision API uses machine learning models to analyze images. You can train a model for the API to use or use the model that's built-in.
Using the built-in model, Cloud Vision classifies images into categories such as "skyscraper", sailboat", "lion", or "Eiffel Tower". It detects objects, faces, logos, and landmarks within images, and locates words contained within images.
Samples
The following examples illustrate how to configure support for Cloud Vision extension actions using the ExtensionCallout policy.
Detect labels
In the following example, the extension's detectLabels
action gets the image at the image_uri
and passes it to the Cloud Vision API for analysis. The API will examine the image and determine which labels apply to the content of the image.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ConnectorCallout async="false" continueOnError="true" enabled="true" name="Cloud-Vision-Extension">
<DisplayName>Cloud Vision Extension</DisplayName>
<Connector>cloud-vision-extension-example</Connector>
<Action>detectLabels</Action>
<Input><![CDATA[
{
"image_uri" : "gs://cloud-vision-example/empire-state-building.jpg"
}
]]></Input>
<Output>vision.labels.retrieved</Output>
</ConnectorCallout>
The following Assign Message policy uses the value of the variable storing the extension's response to assign the response payload.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<AssignMessage async="false" continueOnError="false" enabled="true" name="Get-Image-Labels">
<DisplayName>Get Image Labels</DisplayName>
<AssignTo type="response" createNew="false"/>
<Set>
<Payload contentType="application/json">{vision.labels.retrieved}</Payload>
</Set>
</AssignMessage>
Given an image of an urban area with a very tall building in it, you might receive a response such as the following:
{
"labels": [
{
"locations": [
],
"properties": [
],
"mid": "/m/0j_s4",
"locale": "",
"description": "metropolitan area",
"score": 0.9868549704551697,
"confidence": 0,
"topicality": 0.9868549704551697,
"boundingPoly": null
},
{
"locations": [
],
"properties": [
],
"mid": "/m/079cl",
"locale": "",
"description": "skyscraper",
"score": 0.966157853603363,
"confidence": 0,
"topicality": 0.966157853603363,
"boundingPoly": null
}
]
}
Detect text
In the following example, the extensions detectText
action gets the image at the image_uri
and passes it to the Cloud Vision API for analysis. The API will examine the image, identifying text in the image.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ConnectorCallout async="false" continueOnError="true" enabled="true" name="Cloud-Vision-Text">
<DisplayName>Cloud Vision Text</DisplayName>
<Connector>cloud-vision-extension-example</Connector>
<Action>detectText</Action>
<Input><![CDATA[
{
"image_uri" : "gs://cloud-vision-example/parking-signs1.jpg"
}
]]></Input>
<Output>vision.text.retrieved</Output>
</ConnectorCallout>
The following Assign Message policy uses the value of the variable storing the extension's response to assign the response payload.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<AssignMessage async="false" continueOnError="false" enabled="true" name="Get-Image-Text">
<DisplayName>Get Image Text</DisplayName>
<AssignTo type="response" createNew="false"/>
<Set>
<Payload contentType="application/json">{vision.text.retrieved}</Payload>
</Set>
</AssignMessage>
Given an image containing signs in a parking log, you might receive a response such as the following:
{
"text": [
{
"locations": [
],
"properties": [
],
"mid": "",
"locale": "en",
"description": "RESERVED\nVISITORPARKING\nPARKING\nONLY>\n$150 FINE\n",
"score": 0,
"confidence": 0,
"topicality": 0,
"boundingPoly": {
"vertices": [
{
"x": 64,
"y": 56
},
{
"x": 378,
"y": 56
},
{
"x": 378,
"y": 218
},
{
"x": 64,
"y": 218
}
]
}
},
{
"locations": [
],
"properties": [
],
"mid": "",
"locale": "",
"description": "RESERVED",
"score": 0,
"confidence": 0,
"topicality": 0,
"boundingPoly": {
"vertices": [
{
"x": 243,
"y": 56
},
{
"x": 378,
"y": 56
},
{
"x": 378,
"y": 84
},
{
"x": 243,
"y": 84
}
]
}
}
]
}
Actions
detectLabels
Detects and extracts information about entities within the specified image. Detected entities range across a broad group of categories. For example, use this action to identify objects, locations, activities, animal species, products, and more.
Also, be sure to see the Cloud Vision API documentation.
Request parameters
Parameter | Description | Type | Default | Required |
---|---|---|---|---|
image_uri | Source of the image. This can be from the Internet or Google Cloud Storage (format: gs://bucketname/filename ). If the source is Google Cloud Storage, the image file must be public. |
String | None. | Yes. |
Syntax
<Input><![CDATA[{
"image_uri" : "uri-of-image-to-analyze"
}
]]></Input>
Example
In the following example, the extension's detectLabels
action sends the specified image to the Vision API for analysis.
<Input><![CDATA[
{
"image_uri" : "gs://cloud-vision-example/empire-state-building.jpg"
}
]]></Input>
Response
An object containing a labels
array of labels that represent entities detected within the image. For more, see Detect labels.
detectText
Detects and extracts text from the specified image.
Request parameters
Parameter | Description | Type | Default | Required |
---|---|---|---|---|
image_uri | Source of the image. This can be from the Internet or Google Cloud Storage (format: gs://bucketname/filename ). If the source is Google Cloud Storage, the image file must be public. |
String | None. | Yes. |
Syntax
<Input><![CDATA[
{
"image_uri" : "uri-of-image-to-analyze"
}
]]></Input>
Example
In the following example, the extension's detectText
action sends the specified image to the Vision API for analysis.
<Input><![CDATA[
{
"image_uri" : "gs://cloud-vision-example/parking-signs1.jpg"
}
]]></Input>
Response
An object containing a text
array of the text detected. For more, see Detect labels.
Configuration Reference
Use the following when you're configuring and deploying this extension for use in API proxies. For steps to configure an extension using the Apigee console, see Adding and configuring an extension.
Common extension properties
The following properties are present for every extension.
Property | Description | Default | Required |
---|---|---|---|
name |
Name you're giving this configuration of the extension. | None | Yes |
packageName |
Name of the extension package as given by Apigee Edge. | None | Yes |
version |
Version number for the extension package from which you're configuring an extension. | None | Yes |
configuration |
Configuration value specific to the extension you're adding. See Properties for this extension package | None | Yes |